

Member of the FM Global Group

Certificate of Compliance

Product Designation	Hanger Rod Size, mm	Max Nominal Pipe Size, in.	Remarks
EA II M10	10	4	Hammerset Anchor
EA II M12	12	8	Hammerset Anchor
EA II M16	16	12	Hammerset Anchor
EA II M20	20	12	Hammerset Anchor
FHII 15**	10	4	Expansion Anchor
FHII 18/80**	12	8	Expansion Anchor
FHII 18/100**	12	8	Expansion Anchor
FHII 24**	16	12	Expansion Anchor
EAZU	M10		Anchor bolt
FAZ II	M12	8	Anchor bolt
FAZ II	M16	12	Anchor bolt
FAZ II	M20	12	Anchor bolt
FAZH	M24	<u> </u>	Anchol boit
FZA 14 x 40 M10	10	4	Zykon Undercut Anchor
FZA 14 x 60 M10	10	4	Zykon Undercut Anchor
FZA 18 x 80 M12	12	8	Zykon Undercut Anchor
FZA 22 x 100 M16	16	12	Zykon Undercut Anchor
FZA 22 x 125 M16	16	12	Zykon Undercut Anchor
FZA 22 x 125 M16 D/25	16	12	Zykon Undercut Anchor
FZA 18 x 80 M10 I	10	4	Zykon Undercut Anchor
FZA 22 x 100 M12 I	12	8	Zykon Undercut Anchor
FZA 22 x 125 M12 I	12	8	Zykon Undercut Anchor
FZA 14 x 80 M10 D/20	10	4	Zykon Undercut Anchor
FZA 14 x 100 M10 D/4 0	10	4	Zykon Undercut Anchor
FZA 18 x 100 M12 D/20	12	8	Zykon Undercut Anchor
FZA 18 x 130 M12 D/50	12	8	Zykon Undercut Anchor
FZEA II 12 x 40 M10*	10	4	Undercut Anchor
FZEA II 14 x 40 M12*	12	4	Undercut Anchor

*These anchors are also FM Approved when threaded for use with the nearest equivalent standard metric or UNC size rod.

**Model FH II Approved with Bolt, Screw, Cap Nut or Countersink Screw Head.

All anchors are available in zinc plated steel and stainless steel.

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0069 of 24 April 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR Product family Mechanical fastener for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 19 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-00-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-05/0069 issued on 3 July 2017

European Technical Assessment ETA-05/0069 English translation prepared by DIBt

Page 2 of 19 | 24 April 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 24 April 2020

European Technical Assessment ETA-05/0069 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FAZ II is an anchor made of galvanised steel (FAZ II) or made of stainless steel (FAZ II R) or high corrosion resistant steel (FAZ II HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 4
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Page 4 of 19 | 24 April 2020

European Technical Assessment ETA-05/0069 English translation prepared by DIBt

5

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 24 April 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-05/0069 of 24 April 2020

English translation prepared by DIBt

Produ	ict lab	oel and	d lette	er-cod	e:										
Ma	urking a	irea 3 .	expans	ion slee	eve			□-							
				1	1			_ }	-		arking a ont side		cone b	olt,	
-	╎┼┼╎╞			12/30	╏───				}						
					B										
	,	Marking	/	/	halt			-							
	I	viarking	area z	- cone	DOIL										
Prod	uct labe	el, exan	nple:		∕×F/	AZ II <u>1</u> 2	2/30 R								
Bran	d type	e of fast	ener				LT	hread s	ize / ma	ax. thicl	kness o	f the fix	cture (t _{fi})	
place	ed at m	arking a	area 2 d	or mark	ing area	a 3	id	entifica	tion R o	or HCR	placed	at mar	king are	a 2	
FAZ II:		arbon si		lvanize	d										
FAZ II R: FAZ II H(ainless		esistant	steel										
	JII. III	gricon	03101110	201010111	31001										
Table A	2.1: l	_etter ·	- code	at ma	ırking	area 1	:								
Marking		(a) 5	(b)	(C)	(d)	(A)	(B)	(C)	(D)	(E) 25	(F)	(G)	(H)	()	(K)
Max. t _{fix}	M6	5	10	15	20	5 45	10 50	15 55	20 60	25 65	30 70	35 75	40 80	45 85	50 90
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55 70	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16 M20	70	75	80	85	90 105	95 110	100 115	105 120	110 125	115 130	120 135	125 140	130 145	135 150
	M24			-		130	135	140	145	150	155	160	165	170	175
Marking		(L)	(M)	(N)	(0)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8 M10	105 120	115 130	125 140	135 150	145 160	165 180	185 200	205 220	225 240	245 260	295 310	345 360	395 410	445 460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
F	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525
				Calcu	lation e	existing	ս h _{ef} foi	[,] install	ed fast	eners:					
						-	-								
				exist	ing h _{ef}	= B _{(acco}	ording to ta	able A2.1)	– existi	ng t _{fix}					
Thi	ckness	of the f	ixture t	_{fix} includ	-					e.g. th	ickness	of gro	ut layer	t _{grout}	
					or	other no	on-struc	tural la	yers				(Fig. no	ot to sca	ale)
ficabar D	olt Ana	hor EAT	7	7 11 10 1											·
fischer B			⊆ II, FA4	∠ II K, F									-	-	
Product													Ann	ex A	2
Product	abel ar	nd letter	code												

Table A3.1: Dimensions [mm]

Dort	Decignation					FAZ II, F	AZ II R, F	AZ II HCR		
Part	Designation			M6	M8	M10	M12	M16	M20	M24
1	Expansion sleeve	Sheet thickne	ss	0,8	1,3	1,4	1,6	2,	4	3,0
2	Cone bolt	Thread	size M	6	8	10	12	16	20	24
2		L _G		10	19	26	31	40	50	57
3	Washer	ts	2		,4	1,8	2,3	2,		3,7
5		Ød₅		11	15	19	23	29	36	43
4 & 5	Hexagon nut /	Wrench	n size	10	13	17	19	24	30	36
5	fischer FAZ II dome nut	LD	2		-	22	27	33		-
6	fischer filling disc FFD	t	=		(6		7	8	10
									(Fig. not	to scale)
fische	r Bolt Anchor FAZ	ː II, FAZ	II R, FAZ	Z II HCR						
	uct description								Anne	x A 3

Table	e A4.1: Materials FAZ II (ISO 4042:20	18/Zn5/An(A2K))
Part	Designation	Material
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014
2	Cone bolt	Cold form steel or free cutting steel
3	Washer	Cold strip, EN 10139:2016
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012

Table A4.2: Materials FAZ II R

Part	Designation	Material
1	Expansion sleeve	
2	Cone bolt	Stainless steel EN 10088:2014
3	Washer	
4	Hexagon nut	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

Table A4.3: Materials FAZ II HCR

Part	Designation	Material
1	Expansion sleeve	Stainless steel EN 10088:2014
2	Cone bolt	Lligh correction registent steel EN 10080-2014
3	Washer	High corrosion resistant steel EN 10088:2014
4	Hexagon nut	High corrosion resistant steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

(Fig. not to scale)

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

Product description Materials

Annex A 4

Specifica	ations o	of inten	ded use				
Anchorages subject to:							
Size	M6	M8	FAZ II, F/	AZ II R, FA	AZ II HCR M16	M20	M24
Static and quasi-static loads		1	•				
Cracked and uncracked concrete Fire exposure	-			1			
Seismic performance C1					/		
category C2 ¹⁾		-		v	/		-1
 ¹⁾ FAZ II HCR: Only valid for cold-formed version (Base materials: Compacted reinforced and unreinforced normal according to EN 206-1:2013+A1:2016 Strength classes C20/25 to C50/60 according to 	l weight c	oncrete	without fibre	es (cracke	d and unc	racked)	
 Use conditions (Environmental conditions): Structures subject to dry internal conditions (FA) 							
 Structures subject to external atmospheric expo permanently damp internal condition, if no partic (FAZ II R, FAZ II HCR) 	osure (inc	luding in	dustrial and		nvironme	nt) and to	
 Structures subject to external atmospheric exponent aggressive conditions exist (FAZ II HCR) Note: Particular aggressive conditions are e.g. permane chloride atmosphere of indoor swimming pools or atr 	ent, alterna nosphere	ting imme with extre	ersion in seav	water or the			
(e.g. in desulphurization plants or road tunnels where	e deicing n	nateriais a	are used)				
 Design: Anchorages are to be designed under the response work 	onsibility o	of an enç	gineer expe	rienced in	anchorag	jes and co	oncrete
 Verifiable calculation notes and drawings are to position of the anchor is indicated on the design to supports, etc.) 							
Design of fastenings according to EN 1992-4:20			•				
 For effective embedment depth h_{ef} < 40 mm on ceilings with internal exposure) are covered by 		ly indete	rminate fixi	ngs (e.g. l	ight-weigh	nt suspend	bet
fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR							

Intended Use Specifications Annex B 1

Table B2.1: Installation parameters

Sizo			F/	AZ II, FA	<u>Z II R, </u> F	AZ II HO		
Size	N	/16	M8	M10	M12	M16	M20	M24
Nominal drill hole diameter d ₀ =		6	8	10	12	16	20	24
Maximum bit diameter with hammer or hollow drilling [1	mm] 6,	40	8,45	10,45	12,5	16,5	20,55	24,5
Maximum bit diameter d _{cut,max} ' with diamond drilling		-	8,15	10,45	12,25	16,45	20,50	24,4
$h_{nom} \ge$	46	6,5	44,5	52,0	63,5	82,5	120	148,
Dverall fastener embedment depth in the (L)	(6 mm]	,5)	(9,5)	(12)	(13,5)	(17,5)	(20)	(23,5
[·				Existin	g h _{ef} + L	$h = h_{nom}$	-	
Depth of drill hole to deepest point $h_1 \ge$				h _{nom} + 5			h _{nom}	+ 10
Diameter of clearance hole in the fixture $d_f \leq [1]$	mm]	7	9	12	14	18	22	26
	<u>[Nm] </u> 8	8	20	45	60	110	200	270
Excess length after hammering-in the cone bolt (for fischer dome nut O = [rapplications according to Annex B6)	mm]		-	12	16	20		
			-					
			$\mathbb{H}($	T _{inst}				
L hef hnom			₽(T _{inst}				
$h_{ef} = Effective embedment depth$ $t_{fix} = Thickness of the fixture$ $h_1 = Depth of drill hole to deepest point$ $h = Thickness of the concrete member$ $h_{min} = Minimum thickness of concrete member$ $h_{nom} = Overall fastener embedment depth in the concrete$	crete		₽	T _{inst}				
$h_{ef} = Effective embedment depth$ $t_{fix} = Thickness of the fixture$ $h_1 = Depth of drill hole to deepest point$ $h = Thickness of the concrete member$ $h_{min} = Minimum thickness of concrete member$	crete		₽(T _{inst}		(Fig. ı	not to sc	ale)
$h_{ef} = Effective embedment depth$ $t_{fix} = Thickness of the fixture$ $h_1 = Depth of drill hole to deepest point$ $h = Thickness of the concrete member$ $h_{min} = Minimum thickness of concrete member$ $h_{nom} = Overall fastener embedment depth in the concrete$	crete			T _{inst}				
$\begin{array}{rcl} h_{nom} & & \\ h_{1} & & \\ h_{ix} & = & \\ h$	crete			T _{inst}			not to sc nnex B	

Qian					FAZ II, F	FAZ II R, I	FAZ II HC	R	
Size			M6	M8	M10	M12	M16	M20	M24
Minimum edge distance					-				
Uncracked concrete	— Cmin		45	40	45	55	65	95	135
Cracked concrete	Cmin		40	40	40	55	05	85	100
Corresponding spacing	s	[mm]			acco	rding to A	nnex B4		
Minimum thickness of concrete member	h _{min}	[]		80		100	140	160	200
Thickness of concrete member	h≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ ¹⁾ +	- 2 · d₀}
Minimum spacing									
Uncracked concrete	C .		35	40	40	50	65	95	100
Cracked concrete	— Smin		30	35	40	50	05	95	
Corresponding edge distance	С	[mm]			acco	rding to A	nnex B4		
Minimum thickness of concrete member	h _{min}			80		100	140	160	200
Thickness of concrete member	h≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ 1) +	- 2 · d₀}
Minimal splitting area									
Uncracked concrete		[·1000	5,1	18	37	54	67	100	117,5
Cracked concrete	— A _{sp,req}		1,5	12	27	40	50	77	87,5

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp,ef}$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

Intended Use Minimum thickness of member, minimum spacing and edge distance Annex B 3

Table B4.1: Effective splitting	a.		
	1,5°C S 1,5°C		
Single anchor and group of anchors with $s > 3 \cdot c$	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm ²]	with c ≥ c _{min}
Group of anchors with $s \le 3 \cdot c$	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$
Table B4.2: Effective splitting	g area A _{sp,ef} with member thickness	ess h ≤ h _{ef} + 1,5	c and h≥h _{min}
Single anchor and	1.5 c s 1.5 c		\cdot c and $h \ge h_{min}$
Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s > 3 \cdot c$	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$		
Single anchor and group of anchors with $s > 3 \cdot c$	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$ hall be rounded to at least 5 mm	[mm ²]	with c ≥ c _{min}

Installation instructions:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: fischer FAZ II dome nut.
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to
 be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of
 the concrete structure

Installation instructions: Drilling and cleaning the hole

		Types of drills and cleaning		
Hammer drill	540000000	1: Drill the hole	2: Clean the hole	
Hollow drill	Î	1: Drill the hole with automatic cleaning		-
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole	
fischer Bolt Anch Intended Use Installation instru	or FAZ II, FAZ II R,	FAZ II HCR		Annex B 5

HEXAGON NUT:

3: Set the fastener

4: Apply Tinst

5: Installed fastener

fischer FAZ II DOME NUT:

Option 1: Push through installation with setting gauge SL-H:

5: Turn on the washer and fischer FAZ II dome nut

6: Apply Tinst

7: Installed fastener

3: Set the fastener using setting gauge

4: Check offset

3: Set the fastener

4: check setting position: Visible one turn of a thread

4.1: Remove nut

fischer FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:

Optional	 (compressive strength ≥ 50 N/mm² e.g. FIS SB) after step 7 (for eliminating the annular gap). The filling disc is additional to the standard washer. The thickness of the filling disc must be considered for definition of t_{fix} Countersunk of the filling disc in direction to the anchor plate. 	
fischer Bolt	Anchor FAZ II, FAZ II R, FAZ II HCR	
Intended L Installation	Jse instructions	Annex B 6

0'						F/	AZ II, FAZ	II R, FAZ	II HCR			
Size					M6	M8	M10	M12	M16	M20	M24	
			h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125	
Charac	toriotio		R30		0,61) / 0,92)	1,4	2,8	5,0	9,4	14,7	21,	
Charac resist		NI	R60		0,41) / 0,92)	1,2	2,3	4,1	7,7	12,0	17,3	
steel f		N _{Rk,s,fi}	R90		0,31) / 0,92)	0,9	1,9	3,2	6,0	9,4	13,5	
310011	andre		R120		0,21) / 0,72)	0,8	1,6	2,8	5,2	8,1	11,6	
Charac	R30 -		7,7 ⋅ h _{ef} ^{1,5} ⋅ (20) ^{0,5} ⋅ h _{ef}				200 / 1000					
resistance NRk,c,fi Concrete cone failure		R90 R120	[kN]				,	0 / 1000 · 0	0			
		C	R30			0,9 / 2,0	[] [• Tief / 200	J / 1000 · 0	,o 		
Charac			R60		0,4		2,2 / 3,3	30/50	4,5 / 6,8	8,6	12,0	
resist		N _{Rk,p,fi}	R90		0,1	0,5 / 2,0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,070,0	1,070,0	0,0	,	
pullout	failure	-	R120		0,3	1	1.7 / 2.6	2,4 / 4,0	3,6 / 5,4	6,9	9,6	
					-,-		-,,-	_,,_		-,-		
Table C3.	2: Chara	acteristic	values	of sh e	ear resista	nce und	er fire e x	kposure	•			
	Size				R30				R60			
FAZ II, FAZ		II HCR	V _{Rk,s,f}	i,30 [kN]		,fi,30 [Nm]	VR	k,s,fi,60 [kN]		⁰ Rk,s,fi,60 [Nm]	
M6		40		/ 0,92))/ 0,2 ²⁾		4 ¹⁾ / 0,9 ²⁾		0,3 ¹⁾ /0, ⁻		
M8	1 -	35	,	,8	,	1,4	,	1,6		1,2		
M10		40		,-	3,6	-,-		2,9		3,0		
M12	_ h _{ef} ≥ _	50	6	6,3	ŕ	7,8		4,9		6,4		
M16		65		1,7		9,9		9,1		16,3		
M20	1 -	100		8,2		9,0		14,2		31,8		
M24		125		6,3		57,3		20,5		55,0		
	Size				R90				R120			
FAZ II, FAZ			V _{Rk,s,f}	i,90 [kN]		,fi,90 [Nm]	VR	,s,fi,120 [kN]		Rk,s,fi,120	[Nm]	
M6	,	40		/ 0,9 ²⁾)/0,1 ²⁾		2 ¹⁾ /0,7 ²⁾		0,2 ¹⁾ /0,		
 M8		35	,	,3		1,0		1,2		0,8	<u>.</u>	
M10		40		, <u>0</u> 2,2	2,4		1,2			2,1		
M12	h _{ef} ≥ _	50		<u>., </u>				2,8		4,3		
M16		65		5,6		2,6		5,3		11,0		
M20		100		0,3		2,6		8,3		21,4		
M24		125		4,8	42,6			11,9	37,0			
Concrete pr Table C3.	3: Minim	num spac	r ngs ar	nd min	imum edge	e distanc	ces of ar	nchors ur	nder fire	expos	ure	
	for te i	nsion an	d shea	r load								
Size						R M20 M24						
		<u> </u>	'	M6	M8	M10	M12 Annex E	M16	M20	M	24	
Spacing		<u>Smin</u> [m	ım] 📙				$C_{min} = 2$					
Edge distan	се	Cmin			for fire expo	sure from			c _{min} ≥ 300	mm		
¹⁾ FAZ II ²⁾ FAZ II R /	HCR											
fischer Bolt	Anchor FA	AZ II, FAZ I	ll R, FAZ	II HCF	{							

Table C4.1: Characteristic values of tension and shear resistance under seismic action category C1 FAZ II, FAZ II R, FAZ II HCR Size M6 **M8** M10 M12 M16 M20 M24 Length of anchor 167 186 221 285 394 477 L_{max} 40 -50 -[mm] 65 -45 100 Effective embedment depth h_{ef} 125 60 70 85 With filling of the annular gap 1.0 [-] $lpha_{ ext{gap}}$ Steel failure Characteristic resistance tension load C1 41,0 66,0 N_{Rk,s,C1} [kN] 16,0 27,0 111,0 150,0 Partial factor for steel failure γMs,C1¹⁾ 1,5 [-] **Pullout failure** Characteristic resistance tension load in 8,0 16,0 28,2 36,0 [kN] 4,6 50,3 NRk,p,C1 cracked concrete C1 Installation factor 1,0 [-] γinst Steel failure without lever arm Characteristic resistance shear load C1 V_{Rk,s,C1} [kN] 11 17 27 47 56 69 Partial factor for steel failure γMs,C1¹⁾ [-] 1,25 ¹⁾ In absence of other national regulations Table C4.2: Characteristic values of tension and shear resistance under seismic action category C2 FAZ II, FAZ II R, FAZ II HCR¹⁾ Size M6 **M8** M10 M12 M16 M20 M24 186 285 Length of anchor L_{max} [mm] -221 394 _ With filling of the annular gap 1,0 [-] $lpha_{\mathsf{gap}}$ Steel failure Characteristic resistance tension load C2 [kN] 27 41 66 111 N_{Rk,s,C2} Partial factor for steel failure 1,5 $\gamma_{Ms,C2}^{2)}$ [-] **Pullout failure** h_{ef} [mm] 60 70 85 100 N_{Rk,p,C2} [kN] 5,1 7.4 21,5 30.7 Characteristic resistance tension load in cracked concrete C2 40-59 50-69 h_{ef} [mm] 65-84 2,7 16,4 N_{Rk,p,C2} [kN] 4,4 Installation factor 1,0 γinst [-] Steel failure without lever arm 60 70 85 100 h_{ef} [mm] 10,0 17,4 27,5 39,9 [kN] V_{Rk,s,C2} Characteristic resistance shear load C2 40-59 h_{ef} [mm] 50-69 65-84 $V_{\mathsf{Rk},\mathsf{s},\mathsf{C2}}$ 7,0 12,7 22,0 [kN] Partial factor for steel failure γ Ms,C2²⁾ 1,25 [-] ¹⁾ FAZ II HCR: Only valid for cold-formed version (according to Annex A1) ²⁾ In absence of other national regulations fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR Annex C 4 Performances Characteristic values of resistance under tension and shear loads under seismic action

				F	AZ II, FA	ZIIR, I	FAZ II H	ICR	
Size			M6	M8	M10	M12	M16	M20	M24
Displacement – facto	or for tensile load ¹⁾			1	L				
δN0 - factor	in cracked concrete		0,13	0,22	0,12	0,09	0,08	0,07	0,05
δN∞ - factor		— [mm/kN	1,00	0,78	0,40	0,19		09	0,07
δN0 - factor i	in uncracked concrete	L	0,16	0,07	0,05	0,14	06	0,05	0,04
δ _{N∞ - factor}	ecomonto undos ototio.	and quasi					0,10	0,00	0,00
Table C5.2: Displa	acements under static	and quasi		near	Jads	FAZ II			
Size			M6	M8	M10	M12	M16	M20	M24
Displacement – facto	or for shear load ²⁾								
δvo – factor			0,6	0,35	0,37	0,27	0,10	0,09	0,07
δV_{∞} - factor	-		0,9	0,52	0,55	0,40	0,14	0,15	0,11
	 in cracked and uncracked concrete 	[mm/kN]			FAZ I	R, FAZ			
δ V0 - factor	-		0,6	0,23	0,19	0,18	0,10	0,11	0,07
			0,9	0,27	0,22	0,16	0,11	0,05	0,09
$ \begin{split} & \delta_{V\infty - factor} \\ ^{1)} \text{ Calculation of effect} \\ & \delta_{N0} = \delta_{N0 - factor} \cdot \text{Ned} \\ & \delta_{N\infty} = \delta_{N\infty - factor} \cdot \text{Ned} \\ & (\text{Ned: Design value of }) \end{split} $		გ [.] გ.	alculatio $v_0 = \delta v_0 - \delta v_0 - \delta v_\infty - \delta v$	_{factor} · V⊮ - _{factor} · V	ED			orce)	
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - f_{actor} \cdot N_{ED}$ $\delta_{N\infty} = \delta_{N\infty} - f_{actor} \cdot N_{ED}$ (Ned: Design value))	δ δ') (\	alculatio $v_0 = \delta v_0 - \delta v_0 - \delta v_\infty - \delta v$	factor · Vi - factor · V ign value	e of the	applied Il embe	shear fo edment	depths	8
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - f_{actor} \cdot N_{ED}$ $\delta_{N\infty} = \delta_{N\infty} - f_{actor} \cdot N_{ED}$ (Ned: Design value)	of the applied tension force	δ δ) (\ on loads fo	alculatio $v_0 = \delta v_0 - \frac{1}{2} \delta v_0 - 1$	factor · Ve factor · V ign value gory C FAZ	ED ED e of the 2 for al 2 II, FAZ	applied Il embe II R, FA	shear fo edment	depths	
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displation Size	of the applied tension force	δ δ) (\ on loads fo	alculatio $v_0 = \delta v_0 - \frac{1}{2} \delta v_0 - 1$	factor · Ve factor · V ign value gory C FAZ	e of the 2 for al 11, FAZ	applied Il embe II R, FA M12	shear fo edment AZ II HC M16	: depths R M20	S M24
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displacement DLS	of the applied tension force acements under tensic	ہ ک) (۱)) (۱)))))))))))))))))))	alculatio $v_0 = \delta v_0 - \frac{1}{2} \delta v_0 - 1$	factor · Ve - factor · V ign value gory C FAZ M8	2 for al 11, FAZ 12,7	applied Il embe Il R, FA M12 4,4	edment Z II HC M16	t depths R <u>M20</u> 5,6	
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displation Size	of the applied tension force acements under tensic	δ δ) (\ on loads fo	alculatio $v_0 = \delta v_0 - \frac{1}{2} \delta v_0 - 1$	factor · Ve - factor · V ign value gory C FAZ M8	e of the 2 for al 11, FAZ	applied Il embe II R, FA M12	shear fo edment AZ II HC M16	: depths R M20	
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displacement DLS Displacement ULS	of the applied tension force acements under tensic	ہ ک) (\ 	alculatio /0 = δv0 - /∞ = δv∞ - /ED: Des r categ	factor · Ve gory C FAZ M8	ED E	applied II embe II R, FA M12 4,4 13,0	shear fo edment AZ II HC M16 12,3 ment d	epths	
 ¹⁾ Calculation of effect δ_{N0} = δ_{N0} - factor · NED δ_{N∞} = δ_{N∞} - factor · NED (NED: Design value of (NED: Design value of Size Displacement DLS Displacement ULS Table C5.4: Displate 	of the applied tension force acements under tensic δ _{N,C2(DLS)} δ _{N,C2 (ULS)}	ہ ک) (۱) on loads for [mm]	alculatio ¹ / ₂₀ = δvo - ¹ / ₂₀ = δvo - ¹ / ₂₀ : Des r catego M6	factor · Vi gn value gory C FAZ M8 ry C2 f	2 for al 2.1, FAZ 11,5 for all e 11, FAZ	applied II embe II R, FA M12 4,4 13,0 II R, FA	shear fo edment X II HC M16 12,3 ment d X II HC	depths R 5,6 14,4 epths R	M24 -
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displacement DLS Displacement ULS Table C5.4: Displacement Size	of the applied tension force acements under tensic δ _{N,C2(DLS)} δ _{N,C2 (ULS)}	ہ ک) (۱) on loads for [mm]	alculatio ¹ / ₂₀ = δvo - ¹ / ₂₀ = δvo - ¹ / ₂₀ : Des r catego M6	factor · Vi gn value gory C FAZ M8 ry C2 f	ED E	applied II embe II R, FA M12 4,4 13,0	shear fo edment AZ II HC M16 12,3 ment d	epths	M24 -
 ¹⁾ Calculation of effect δ_{N0} = δ_{N0} - factor · NED δ_{N∞} = δ_{N∞} - factor · NED (NED: Design value of (NED: Design value of Size Displacement DLS Displacement ULS Table C5.4: Displate 	of the applied tension force acements under tensic δ _{N,C2(DLS)} δ _{N,C2 (ULS)}	on loads for	alculatio ¹ / ₂₀ = δvo - ¹ / ₂₀ = δvo - ¹ / ₂₀ : Des r catego M6	factor · Vi gn value gory C FAZ M8 ry C2 f	2 for al 2.1, FAZ 11,5 for all e 11, FAZ	applied II embe II R, FA M12 4,4 13,0 II R, FA	shear fo edment X II HC M16 12,3 ment d X II HC	depths R 5,6 14,4 epths R	
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0} - factor \cdot NED$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot NED$ (NED: Design value of Table C5.3: Displacement DLS Displacement ULS Table C5.4: Displacement Size	of the applied tension force acements under tensic δ _{N,C2(DLS)} δ _{N,C2} (ULS) acements under shear	ہ ک) (۱) on loads for [mm]	alculatio ¹ / ₂₀ = δvo - ¹ / ₂₀ = δvo - ¹ / ₂₀ : Des r catego M6	factor · Vi gn value gory C FAZ M8 ry C2 f	2 for al 2 for al 2,7 11,5 for all e 11, FAZ M10	applied II embe II R, FA M12 13,0 Embedr II R, FA M12	edment Z II HC 12,3 ment d Z II HC M16	t depths R 5,6 14,4 epths R M20	M24 -